Sabtu, 27 November 2010

DERAJAT KEASAMAN pH

Bila Anda perhatikan, nilai pH merupakan eksponen negatif dari konsentrasi ion hidronium. Sebagai contoh, larutan basa kuat dengan konsentrasi ion hidronium 10-11 M mempunyai pH 11. Larutan asam kuat dengan pH 1 mempunyai konsentrasi ion hidronium 10-1 M. Hal ini dikarenakan asam/basa kuat terionisasi sempurna, maka konsentrasi ion H+ setara dengan konsentrasi asamnya.
37
Berdasarkan uraian di atas, karena pH dan konsentrasi ion H+dihubungkan dengan tanda negatif, maka kedua besaran itu berbanding terbalik, artinya makin besar konsentrasi ion H+ (makin asam larutan) maka makin kecil nilai pH, dan sebaliknya. Selanjutnya, karena dasar logaritma adalah 10 maka larutan yang nilai pH-nya berbeda sebesar n dan mempunyai perbedaan konsentrasi ion H+sebesar 10n. Bila pH berkurang, konsentrasi ion hidronium akan meningkat, dan konsentrasi ion hidroksida berkurang. Pada setiap unit penurunan pH sama dengan peningkatan faktor 10 untuk konsentrasi ion hidronium.

Sebagai contoh, larutan dengan pH 4 dan larutan dengan pH 3 keduanya bersifat asam, karena mempunyai pH kurang dari 7. Larutan dengan pH 3 mempunyai konsentrasi H3O+ 10 kali lebih besar
dari pada larutan dengan pH 4, sehingga perubahan kecil dalam pH dapat membuat perubahan besar dalam konsentrasi ion hidronium. Bila pH meningkat di atas 7, konsentrasi ion hidroksida akan meningkat, dan konsentrasi ion hidronium akan berkurang. Dalam larutan netral, konsentrasi ion hidroksida dan ion hidronium adalah sama.

GARAM ASAM LEMAH BASA KUAT

Untuk jenis garam ini larutannya selalu bersifat basa (pH > 7), dan dalam perhitungan digunakan persamaan:

[OH-] = √ Kh . Cg

dimana:

Kh = Kw/Ka

Kh = konstanta hidrolisis

Jika kita ingin mencari nilai pH-nya secara langsung, dipergunakan persamaan:

pH = 1/2 (pKw + pKa + log Cg)

Contoh:

Hitunglah pH larutan dari 100 ml 0.02 M NaOH dengan 100 ml 0.02 M asam asetat ! (Ka = 10-5).

Jawab:

NaOH + CH3COOH ® CH3COONa + H2O

- mol NaOH = 100/1000 x 0.02 = 0.002 mol

- mol CH3COOH = 100/1000 x 0.02 = 0.002 mol

Karena mol basa yang direaksikannya sama dengan mol asam yang direaksikan, maka tidak ada yang tersisa, yang ada hanya mol garam (CH3COONa) yang terbentuk.

- mol CH3COONa = 0.002 mol (lihat reaksi)
- Cg = 0.002 mol/200 ml = 0.002 mol/0.2 liter = 0.01 M = 10-2 M
- Nilai pH-nya akan bersifat basa (karena garamnya terbentuk dari asam lemah dengan basa kuat), besarnya:

pH = 1/2 (pKw + pKa + log Cg)
= 1/2 (14 + 5 + log 10-2)
= 1/2 (19 – 2)
= 8.5

TEORI ASAM BASA

A. MENURUT ARRHENIUS

Asam ialah senyawa yang dalam larutannya dapat menghasilkan ion H+.

Basa ialah senyawa yang dalam larutannya dapat menghasilkan ion OH-.

Contoh:

1) HCl(aq) → H+(aq) + Cl-(aq)
2) NaOH(aq) → Na+(aq) + OH-(aq)

B. MENURUT BRONSTED-LOWRY

Asam ialah proton donor, sedangkan basa adalah proton akseptor.

Contoh:

1) HAc(aq) + H2O(l) ↔ H3O+(aq) + Ac-(aq)
asam-1 basa-2 asam-2 basa-1

HAc dengan Ac- merupakan pasangan asam-basa konjugasi.
H3O+ dengan H2O merupakan pasangan asam-basa konjugasi.

2) H2O(l) + NH3(aq) ↔ NH4+(aq) + OH-(aq)
asam-1 basa-2 asam-2 basa-1

H2O dengan OH- merupakan pasangan asam-basa konjugasi.
NH4+ dengan NH3 merupakan pasangan asam-basa konjugasi.

Pada contoh di atas terlihat bahwa air dapat bersifat sebagai asam (proton donor) dan sebagai basa (proton akseptor). Zat atau ion atau spesi seperti ini bersifat ampiprotik (amfoter).

SIFAT ALKUNA

ifat fisis

Sifat fisis alkuna, yakni titik didih mirip dengan alkana dan alkena. Semakin tinggi suku alkena, titik didih semakin besar. Pada suhu kamar, tiga suku pertama berwujud gas, suku berikutnya berwujud cair sedangkan pada suku yang tinggi berwujud padat.

Tabel 6. Beberapa sifat fisik alkuna

Nama alkena

Rumus

molekul

Mr

Titik leleh

(oC)

Titik

didih

(0 C)

Kerapatan

(g/Cm3 )

Fase

pada

250 C

Etuna

C2H2

26

-81

-85

-

Gas

Propuna

C3H4

40

-103

-23

-

Gas

1-Butuna

C4H6

54

-126

8

-

Gas

1-Pentuna

C5H8

68

-90

40

0,690

Cair

1-HeksunaC6H10

82

-132710,716Cair
1-HepunaC7H12

96

-811000,733Cair
1-OktunaC8H14

110

-791260,740Cair
1-NonusaC9H16

124

-501510,766Cair
1-DekunaC10H18

138

-441740,765Cair

Sifat kimia

Adanya ikatan rangkap tiga yang dimiliki alkuna memungkinkan terjadinya reaksi adisi, polimerisasi, substitusi dan pembakaran

1. reaksi adisi pada alkuna

o Reaksi alkuna dengan halogen (halogenisasi)

42

Perhatikan reaksi di atas, reaksi pada tahap 2 berlaku aturan markonikov.

o Reaksi alkuna dengan hidrogen halida

43

Reaksi di atas mengikuti aturan markonikov, tetapi jika pada reaksi alkena dan alkuna ditambahkan peroksida maka akan berlaku aturan antimarkonikov. Perhatikan reaksi berikut:

44

o Reaksi alkuna dengan hidrogen

45

2. Polimerisasi alkuna

46

3. Substitusi alkuna Substitusi (pengantian) pada alkuna dilakukan dengan menggantikan satu atom H yang terikat pada C=C di ujung rantai dengan atom lain.

47

4. Pembakaran alkuna Pembakaran alkuna (reaksi alkuna dengan oksigen) akan menghasilkan CO2 dan H2O.

2CH=CH + 5 O2 --> 4CO2 + 2H2O